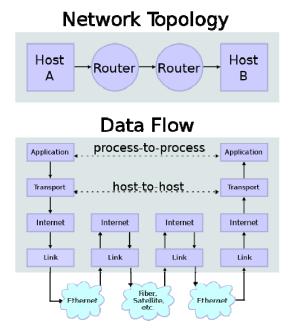
IPIC 2016


Workshop TA2: Open Logistics Interconnection Model & Protocols

Towards a smart hyperconnected era of efficient and sustainable logistics, supply chains and transportation IPIC 2016 - 3rd International Physical Internet Conference

June 29-July 1, 2016 | Atlanta, GA USA

Open Logistics Interconnection Model & Protocols

In telecommunications, interconnection is the physical linking of a carrier's network with equipment or facilities not belonging to that network. The term may refer to a connection between a carrier's facilities and the equipment belonging to its customer, or to a connection between two (or more) carriers.

Sources: wikipedia

Towards a smart hyperconnected era of efficient and sustainable logistics, supply chains and transportation

IPIC 2016 - 3rd International Physical Internet Conference June 29-July 1, 2016 | Atlanta, GA USA

Open Logistics Interconnection Model & Protocols – OLI model

Ballot, E., B. Montreuil, and M. Thémans, *OPENFRET: contribution* à la conceptualisation et à la réalisation d'un hub rail-route de l'Internet Physique, PREDIT, Editor. 2010, MEDDAT: Paris. p. 114.

Montreuil, B., E. Ballot, and F. Fontane. *An Open Logistics Interconnection Model for the Physical Internet*. in *INCOM 12 Conference*. 2012. Bucharest, Romania: IFAC.

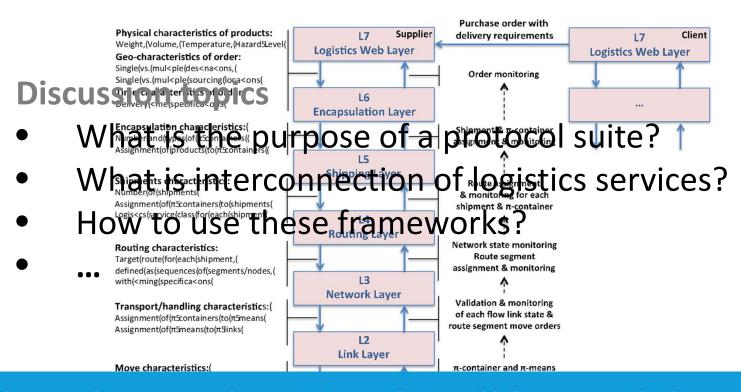
Open Logistics Interconnection Model & Protocols

Agenda:

Presentations

Evaluating five typologies on costs and requirements for hyperconnected logistics networks

Wout Hofman


Networking in the Real World: Unified Modeling of Information and Commodity Distribution Networks Amitangshu Pal and Krishna Kant

Discussion

Towards a smart hyperconnected era of efficient and sustainable logistics, supply chains and transportation

IPIC 2016 - 3rd International Physical Internet Conference June 29-July 1, 2016 | Atlanta, GA USA

Open Logistics Interconnection Model & Protocols

Towards a smart hyperconnected era of efficient and sustainable logistics, supply chains and transportation

IPIC 2016 - 3rd International Physical Internet Conference June 29-July 1, 2016 | Atlanta, GA USA

NETWORKING IN THE REAL WORLD: UNIFIED MODELING OF INFORMATION AND PERISHABLE COMMODITY DISTRIBUTION NETWORKS

Amitangshu Pal and Krishna Kant Computer and Information Sciences Temple University

The Perishability Challenge

Perishable Information Distribution

- Increasing amounts of time sensitive information, including streaming & other real-time data.
- Not well served by traditional "best effort" Internet.
- New architectures to handle these (e.g., content centric networks)

Perishable Commodity Distribution

- Perishability ⇔ Efficiency tradeoff
- Varying perishability of products → Mixing products very difficult
- Local food movement leads to unique local logistics challenges.
- Integration between local & nonlocal logistics a must

➤ Goal:

 Study synergies between Perishable commodity vs. Information distribution to advance both fields

Information vs. Commodity Distribution

- Many similarities
 - Movement of packages or packets between "nodes" with various capabilities
 - Change of mode (or "media"), e.g., truck to railcar or barge
 - Store and forward w/ potential product remix.
 - Accentuated by emerging standardization (e.g., GS1)
 & capacity sharing (e.g., 3PL) ideas
 - Multiple flows with varied SLA requirements
 - Privacy and security requirements (e.g., privacy preserving distribution)
 - Dynamically changing availability and demand

Information vs. Commodity Distribution

- > But many key differences as well
 - Recursive bundling (boxes within boxes)
 - Physical goods cannot be "cloned" (except at source)
 - Packet "carrier" (e.g., truck) and auxiliary resources (e.g., driver, loading equipment)
 - Complex requirements (e.g., long term contracts).
- Can we create a unified model that comprehends
 - Information Networks (IN)
 - Perishability Commodity Distribution Networks (PCDN)

A Unified View

- > 5 layer model similar to TCP/IP protocol stack
- Two types of packets
 - Non-clonable → Transportation of perishable goods
 - Clonable → Computer Networks
- Packets can be of different QoS classes
 - Based on perishability or other handling characteristics
 - Each class has a perishability function within 0 and 1

Virtualization Layer

Transport/Delivery

Routing & Distribution

Media Switching Layer

Physical Layer

Physical layer > Layer 1

- Deals with actual movement of packets along a media segment/channel
 - IN: Transports "frames" over a wired/wireless channel
 - Max frame size, smaller sizes less efficient
 - PCDN: Physical transport over a media segment (road, rail, waterway, or air)
 - Transport in units (e.g., PI containers) that fit the carrier (e.g., truck)
 - Carrying smaller PI containers less efficient
- PCDN Channel is far more complex
 - Multiple roadway segments from point A to B with different capacities.
 - Alternate routes even at layer 1 HWY vs. normal road
 - PCDN traffic of interest just a small part of all traffic that's flowing
 - Much higher uncertainties & little controllability
- Why is abstraction useful?
 - Statistical description of the path (e.g., net capacity)
 - Can be compared to wireless link w/ fading & interference

Media Switching layer > Layer 2

- Media access control
 - Assigns the "channel" (e.g., path to next transfer point)
 - Transfer point: A switch in IN, and a physical transfer point for PCDN
 - May do reframing
 - IN: Break up into smaller frames, make use of jumbo frames
 - PCDN: Truck full of PI containers → Rail car full of PI containers
 - Damaged (rotten) frames → Discard & request replacement
- Complexities in PCDN
 - PCDN needs to assign carriers (e.g., trucks, rail cars) to the packets
 - PCDN needs additional resources (e.g., drivers)
 - PCDN invariably needs to return damaged goods
 - Reverse logistics added complication
- Layer 2 routing
 - IN: Transport between successive routers (layer 3 endpoints)
 - Intermediate transfer point (switches & protocol bridges) with change in media (wired, wireless, optical, ...)
 - PCDN: Transfer of PI containers from a distribution center to next
 - Intermediate transfer points may involve media changes (e.g., truck to railcar)

Routing & Distribution layer: Layer 3

- End-to-end transfer of packets/packages
 - IN: Transfer from src to dest via multiple routers
 - May fragment a TCP stream into multiple IP datagrams
 - Different types of packets may be mixed before framing
 - PCDN: Transfer from src to dest via multiple distribution centers
 - May fragment stream of goods into PI containers
 - Bundling of different types of contents together quite common
- Complexities in PCDN
 - May involve recursive bundling (boxes within boxes)
 - Involves allocation & tracking L3 resource like containers
 - Buffer space management lot more complex (contracts?)
- Routing needs unique IDs
 - For IN, this may be a message or datagram sequence number
 - For PCDN it may be the GTIN, GSIN, SSCC number
- Why is the abstraction useful?
 - Numerous routing algorithms explored in IN
 - Emerging notions of content centric networking

Transport/Delivery Layer: Layer 4

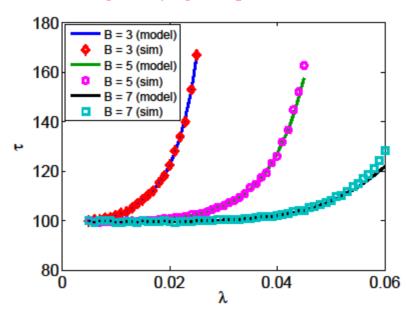
- > End to end (src to dest) delivery of packets
 - IN: User endpoint to user endpoint
 - PCDN: Farm to retailer/business (do not consider retail purchases)
- Similarities
 - Flow control, packetization, resource allocation, retransmission of damaged goods.
- PCDN complexities
 - Batching (accumulating enough goods for transport) an essential component
 - Needs to deal with tradeoffs between perishability, cost, efficiency
 - Contract based delivery scheduling (less flexible flow control)
 - Quality degradation with time & product mixing much more challenging
 - Lateral distribution to handle perishability
 - Reverse logistics for returns and replacements
- Why is the abstraction useful?
 - Content centric & just-in-time media delivery

Virtualization Layer: Layer 5

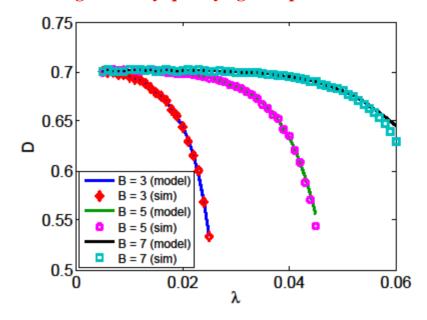
- Virtualization goals in IN & PCDN
 - Share network capacity efficiently among different applications
 - Provide stable capacity allocation and isolation
- Examples for PCDN
 - Define a "HP Transport" as a VS for transporting highly perishable (HP) between a src & dest
 - Similar VSs for moderate and low perishable items
 - Separate VSs for different types of customers → VS for premium customers or other low-end customers
- Key Challenges
 - The mapping of virtual resources on physical resources
 - Lack of visibility into the entire network and the difficulty of tracking the entire network state
- ➤ Why is the abstraction useful?
 - Increasing complexity of both cloud computing and logistics

Resource Management in UNM

- > The unified network involves acquisition of certain resources at each layer of the network
 - Need to obtain carriers & containers to carry products
 - Return of carriers & containers (full or empty)
 - Availability & proper distribution of carriers and containers impacts timeliness & freshness of perishable product delivered.
- Resource management crucial for modeling performance.
 - Details of representation and usage in the paper
- > A simple modeling illustration

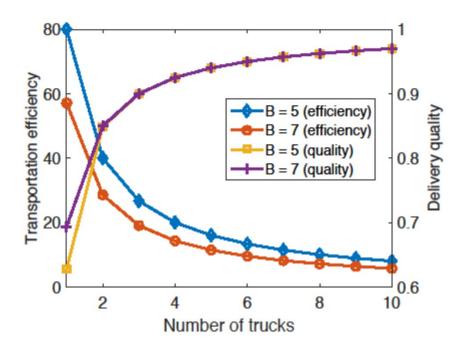

Analytical Model for Commodity Distribution in UNM

- Assumed a bulk queuing theoretic model:
 - Trucks are serving the distribution centers (DCs) that are placed uniformly → truck service time is deterministic
 - Packets are arriving at the distribution center as a Poisson process
 - Distribution centers have finite buffers (\mathcal{M} packages)
 - Packets are wasted when the DC buffer is full
 - DC queue is served upon arrival of a truck
 - The truck loads almost B packages at a DC
 - If <= B packages → entire queue is loaded onto the truck → truck leaves without waiting for other packages
 - The truck capacity is assumed to be $N.B \rightarrow$ each DC reserves a space of B units in the truck
 - This queuing discipline falls under the category of $M/D^B/1/\mathcal{M}$ queue


Analytical Model for Commodity Distribution in UNM

- > 100 nodes are placed in an area of 100x100 sq. m.
- ➤ Package freshness degrades linearly with time at a rate of 0.25% (at delivery centers) and 0.35% (on truck)
- ➤ Package delay increase → delivery quality decrease
 - With lesser batch size $B \rightarrow$ higher truck access time
 - With higher package arrival rate at DC → higher waiting time

Package delay against packet arrival rate



Package delivery quality against packet arrival rate

Analytical Model for Commodity Distribution in UNM

- > Tradeoff between transportation efficiency and delivery quality:
 - Increase in number of trucks → improves the delivery quality as waiting time of the packages reduces
 - However the transportation efficiency reduces due to lesser available packages at each DC
 - Increasing B loads more number of packages at any particular DC → improves the delivery quality especially in case of smaller number of trucks

Conclusions

- We considered the synergies between information and commodity distribution disciplines
 - Devised a unified model to capture both
 - Discussed an analytical framework to get an insight regarding the key performance parameters
 - There is always a tradeoff between the transportation efficiency and delivery quality

Ongoing works:

- We designed a data center optical network inspired by integration of local & nonlocal logistics
- Use the perishable logistics concepts in content centric networks
- Making the perishable logistics more resilient to spoilage and contamination by sensing and local delivery