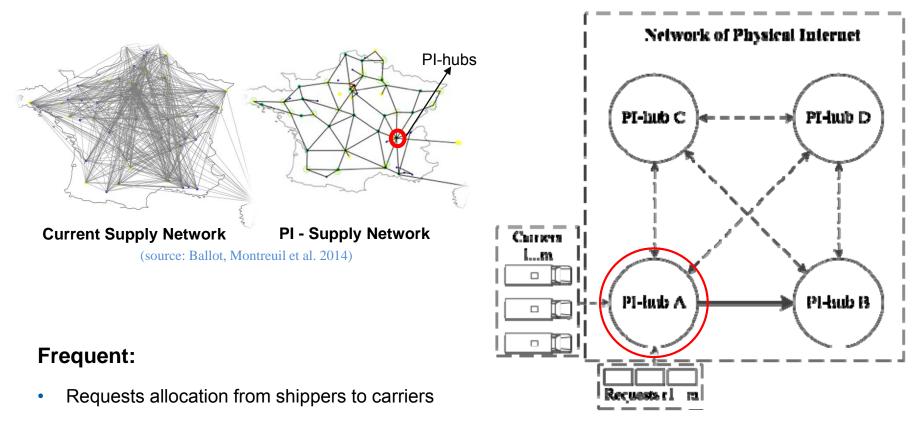


Less-than-truckload Dynamic Price Optimization in Physical Internet

Bin Qiao, Eric Ballot, Shenle Pan Mines ParisTech

Workshop TP2: Physical Internet Analytics and Pricing


- Introduction
- Research problem, questions, methodology
- Model
- Numerical Experiment
- Conclusion

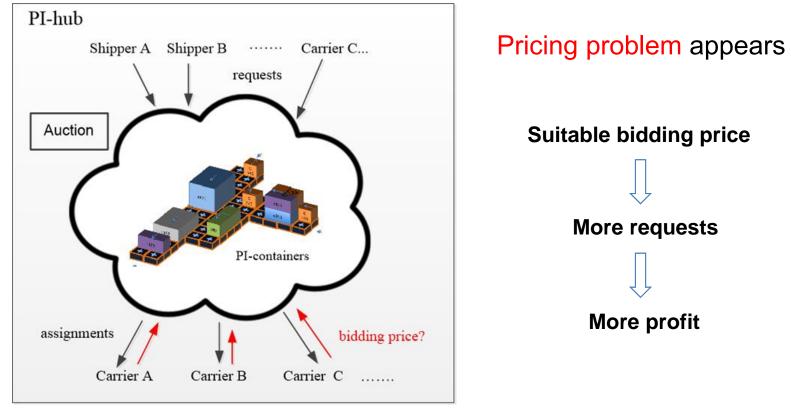
Introduction

${\rm O}$ Allocation problem of shippers' requests in PI

Physical Internet: common open global logistic system (Ballot, Montreuil et al. 2014)

One of important problems: allocation of shippers' requests to carriers.

Requests reallocation and transshipment between carriers



Introduction

MINES

\bigcirc Requests allocation in PI-hubs

Previous work: Auction Mechanism Pan, S., et al. (2014).

Montreuil, B., Meller, R. D. and Ballot, E. (2010)

${\ensuremath{\bigcirc}}$ Pricing problems in transportation industries

Γ	Air cargo	Allotment. (Kasilingam 1997) (Amaruchkul, Cooper et al. 2007)				
Similar LTL	Liner shipping	No competition on price. (Munari 2012) (Uğurlu, Coşgun et al. 2012)				
transportation - No auction mechanism	Railway freight	Fixed rate, scheduling problem. (Crevier, Cordeau et al. 2012) (Kraft 2002)				
	Intermodal transportation Pricing model for mode shift. (Di and Hualong 2012) (Li, Lin et al. 2015)					
FTL freight transporta		ng time slot, scheduling problem. (Figliozzi, Mahmassani et al. 2007) (Mes, Heijde 2006)				
LTL freight transporta		heduling and collaboration problem. (L. Barcos, V. Rodríguez et al. 2010) orking paper. LTL pricing. (Douma, Schuur et al. 2006)				

There is very limited research investigating LTL dynamic (bid) pricing problem in auction mechanism.,

\bigcirc Pricing characteristics of road freight transport in PI

		sequential	The current decision will affect the state of the next auction in current or next hub				
	carriers -	capacity-finite	Carrier's capacity would be finite				
		time-finite	Carrier's waiting time should be finite				
-		LTL	Most of the transport requests in PI-hub are LTL requests				
request	requests -	stochastic	Requests have some stochastic features such as arrival or departure time, size, destination, and planned lane (routing) etc.				
		bundle	It means carrier could bid for several requests in a single auction.				

Because of the high randomness existed in PI, the pricing problem in PI will be dynamic.

Introduction

\bigcirc Gap between pricing in TL/LTL and in PI

(R: request L: lane C:capacity VR: vehicle route)

Mode	Sequential/ Independent S/I	Variable/Fixed V/F			ixed	Multiply/ Single	Stochastic/ Determinate	Reference	
mode		R	L	С	VR	M/S	S/D	Reference	
PI	S	V	V	V	V/F	М	S	This research	
	S	F	V	F	V	S	S	(<u>Mes and Van der</u> <u>Heijden 2007</u>)	
TL/	S	F	V	F	V	S	S	(Figliozzi, Mahmassani et al. 2007)	
Similar TL	S	F	V	F	V	S	S	(Figliozzi, Mahmassani et al. 2006)	No pricing model
	S	F	V	F	V	S	S	(<u>Mes, Heijden et al.</u> <u>2006</u>)	can be used in PI
	S	F	V	F	V	S	S	(<u>Mes, van der Heijden et</u> <u>al. 2010</u>)	
	I	F	V	V	F	М	D	(Li, Lin et al. 2015)	
	S	V	V	V	F	S	S	(Di and Hualong 2012)	
	S	F	V	V	F	М	D	(Crevier, Cordeau et al. <u>2012</u>)	
LTL/	S	V	F	V	F	M/S	S	(Kasilingam 1997)	
Similar LTL	S	F	V	V	F	S	S	(<u>Kraft 2002</u>)	
	S	F	F	V	F	S	S	(<u>Douma, Schuur et al.</u> <u>2006</u>)	
	S	F	V	V	F/V	М	D	(<u>Mesa-Arango and</u> <u>Ukkusuri 2013</u>)	/
TL/LTL		F	F	F	F	S	S	(Toptal and Bingöl 2011)	

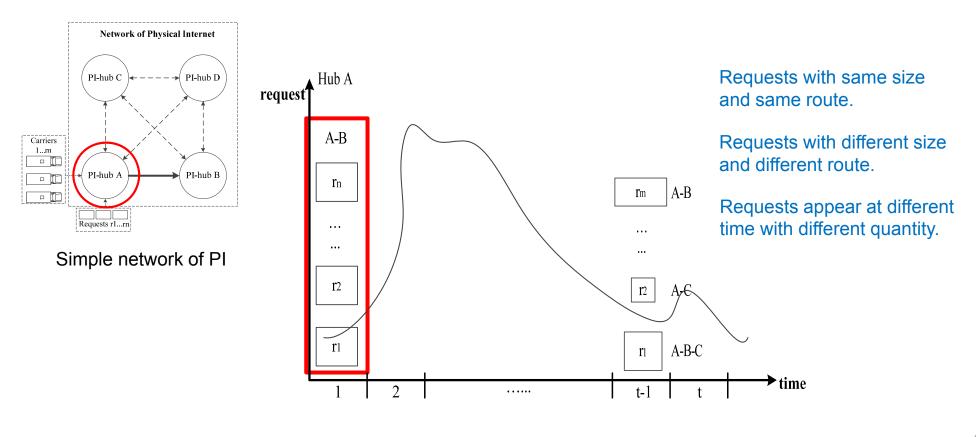
Research problem:

Dynamic pricing problem considering less-than-truckload transport in Physical Internet ---- PI-LTLDP

Research questions:

- 1. How to decide the bidding price for request?
- 2. What factors will affect the price and profit?
- 3. How do the factors impact on pricing decision?

Research methodology:


- 1.Make assumptions of the problem;
- 2. Design optimization model for dynamic pricing;
- 3.Numerical experiments;
- 4. Sensitivity analysis.

Problem Definition — PI-LTLDP

○ Requests flow in PI

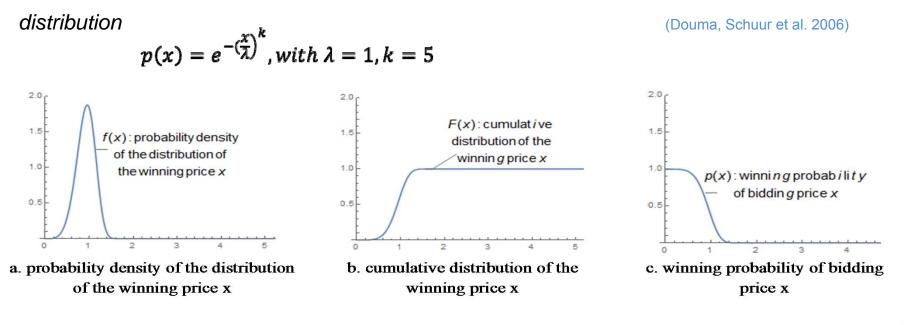
In one hub: *m* carriers, r_n requests with different type and routes, carrier bid for all requests in a time unite (an auction period) --> a vector of biding price { x_i } with *i*=1...*t*

Our focus now: in a single time unite, one type of requests, one-leg of requests (one same route)

Requests distribution in hub A

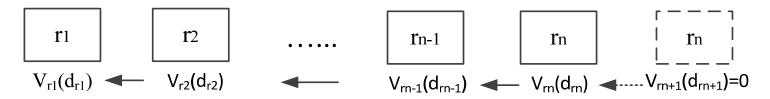
Model

O Assumptions



1. Auction Mechanism:

- (1) first-price sealed-bid auction mechanism
- (2) without considering request bundle
- (3) a carrier bids the same price for each request


2. Winning Probability:

Due to lacking of data, we assume the wining prices are distributed according to Weibull

Model

Dynamic Programming (DP) model: the decision in present state will affect the future state ParisTech

d_r: the vehicle state, defined with the remaining capacity units when bidding for r request.

 $V_r(d_r)$: the expected maximum profit at state d_r .

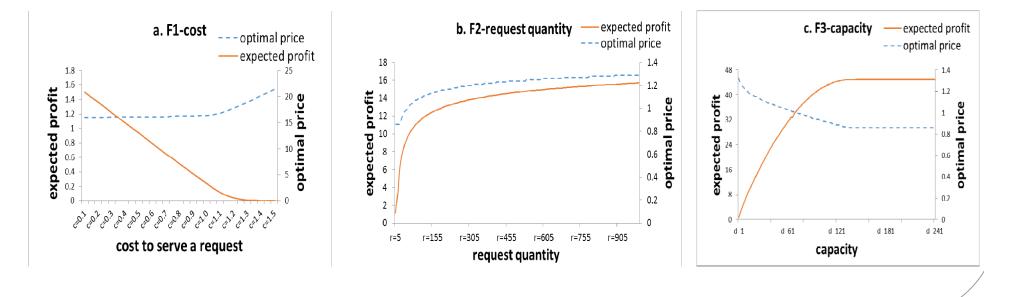
recursion Model:maximum expected profit at state "remaining capacity dr, request r " for price $x \in X$ $V_r(d_r) = \max_{x \in X} [p(x) \cdot [x - c + V_{r+1}(d_r - 1)] + (1 - p(x)) \cdot V_{r+1}(d_r)], \quad r = 1, 2, ..., n - 1, n$ boundary condition: capacity sold out or no requests to bid

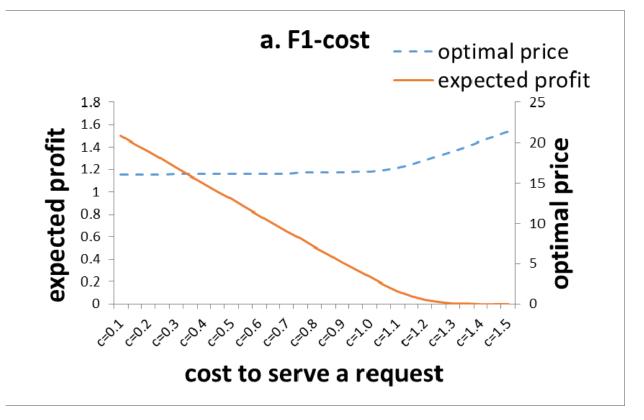
 $V_r(d_r) = 0, if d_r \le 0 \ OR \ r \ge n+1$

optimal bidding price *x**: optimal bidding price

$$x^* = \arg \max_{x \in X} [p(x) \cdot [x - c + V_{r+1}(d_r - 1)] + (1 - p(x)) \cdot V_{r+1}(d_r)], \quad r = 1, 2, \dots n - 1, n$$

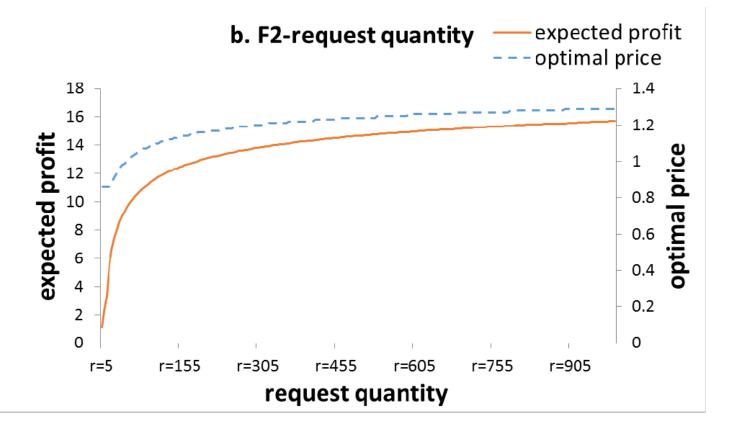
maximum expected profit: maximum expected profit

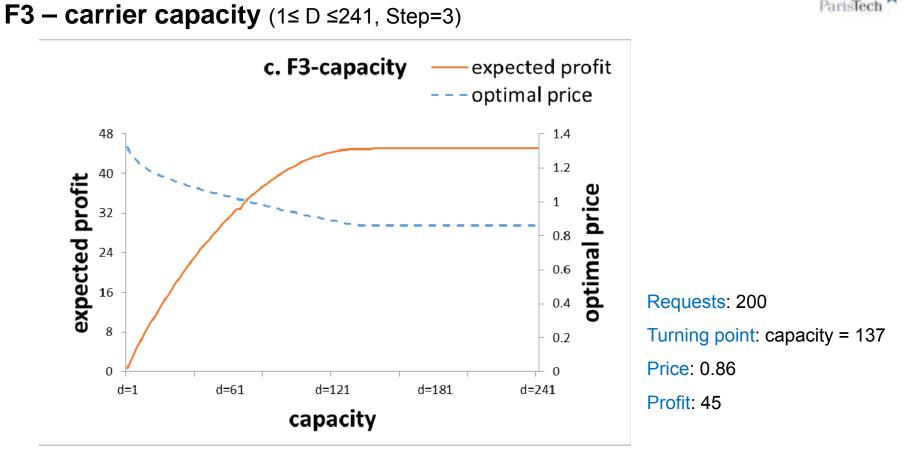

 $V = \max[V_r(d_r)], r = 1,2,...n-1,n$


Major factors that could significantly influence the optimal pricing decision? Carrier's actual transport cost; Requests quantity; Carrier capacity

\rightarrow Expected profit, optimal bidding price

Investigating Factors	Request quantity	Carrier capacity	Carrier cost
F1-carrier cost	r=200	D=20	0.1≤ c ≤1.5, Step=0.05
F2-request quantity	5≤ r ≤1000, Step=5	D=20	c=0.5
F3-carrier capacity	r=200	1≤ D ≤241, Step=3	c=0.5





- 1. The optimal price increases and expected profit decreases conjointly with transport cost.
- 2. determine the expected profits and pricing strategy when carriers improve their cost.

F2 – request quantity (5≤ r ≤1000, Step=5)

- 1. The expected profit and optimal bid price all increase along with the increase of requests quantity.
- 2. Help carriers select the PI-hubs with the highest profit increase rate.

- 1. Capacity increase under a turning point, the *profit* is increasing and the *price* is decreasing.
- 2. Exceeding the turning point, both the *profit* and *price* will stay the same.
- 3. Help carriers decide allocate how many vehicles facing different numbers of requests estimated.

Contributions:

- 1. Introduced and defined the PI-LTLDP problem
- 2. Presented a model to calculate the maximum expected profit and optimal bid price
- 3. Researched what factors and how these factors affect the result

Limitations:

- Winning probability: Lack of real data, the winning prices in auctions are assumed now. Need to be validated.
- 2. Transport cost: Without considering transshipment cost. Transport cost is fixed.

Future work:

- 1. Impact of **other factors**: auctioning time, route of request and carrier, request size (container type)
- 2. From the one leg to the **whole network of Physical Internet**
- **3. Other actors** in PI, such as shipper, hub controller
- 4. Apply result into other open transport networks, crowdsourcing delivery
- 5. Apply result into **real market**

Thank you for your attention