IPIC 2016

Workshop WA3: Resilience of Physical Internet Networks

Network resilience is the ability to provide and maintain an acceptable level of service in the face of faults and challenges to normal operation.

The ResiliNets Research Initiative definition of **resilience**

Resilience of Physical Internet Networks

Agenda:

•**Presentation**

Performance evaluation of interconnected logistics networks confronted to hub disruptions Yanyan Yang, Shenle Pan and Eric Ballot

•**Discussion**

Resilience of Physical Internet Networks

Resilience of Physical Internet Networks Discussion topics • \bullet What Kind of disruptions? •• How they impact SC? \bullet **What are the usual responses? Pro and cons.** •**How Picould help to mitigate disruptions in SC?** •**…**

Performance evaluation of interconnected logistics networks confronted to disruptions at hubs

Yanyan YANG Ph.D candidate MINES ParisTech, PSL Research University CGS - Centre de Gestion Scientifique

> Advisors: Pr. Eric BALLOT Dr. Shenle PAN

L'Agence nationale de la recherche
Des projets pour la science

Plan

Context

- \triangleright Research questions and methodology
- \triangleright Simulation model
- \triangleright Numerical study: Case studies of mass distribution in France
- **► Conclusion and perspectives**

Context

Introduction to Supply Chain Disruptions

- \triangleright Supply chain disruption: unplanned events that hamper supply chain systems (Craighead et al. 2007; Ivanov, Sokolov, and Dolgui 2014).
- Causes: natural disasters, terrorists attacks, labour strikes, facilities/transportation failures, machine breakdowns, and etc.

Context

Introduction to Supply Chain Disruptions Risks

- *Supply Chain Resilience* survey 2013 on 519 companies from 71 countries:
- 75% experienced at least 1 disruption per year
- 15% experienced disruptions with cost $> \text{\textsterling}1M$.

Context

Physical Internet

- Using the Digital Internet as a Metaphor for the Physical World
- \triangleright An open and interconnected global system through a standard set of modular containers, and routing protocols and standards (Ballot and Montreuil 2014).

A quantitative study on the resilience of PI, which is defined as performance of PI confronted to disruptions at hubs

Research questions and methodology

Research questions:

- 1) What protocols should be applied when confronted to disruptions at hubs?
- 2) What's the resilience of PI?

Methodology: a simulation approach

Simulation model

Extension of multi-Agent transportation system in Sarraj et al. (2014)

Simulation model –Disruption protocols

 \triangleright Strategy 1: Disruptions avoidance – avoid all disrupted hubs.

 \triangleright Strategy 2: Risk-taking – Consider a penalty during time for disrupted hubs.

Simulation model

Simulating disruptions at hubs –Disruption agent

- \triangleright Two-state Markov process.
- \triangleright State review period: 1 hour
- \triangleright When disrupted, all the logistics services at this hub are paralyzed until the disruption ends.
- \triangleright The goods already at hubs are assumed not destroyed by the disruptions (labour strikes, machine breakdowns, etc.)

Numerical study

Input data:

A real-world database from FMCG chains in France

- 303 Plants, 57 WH and 58 DC.
- \triangleright Flows of 13 weeks in 2009
	- *702 products*
	- *4 451 flows*
	- *2 582 692 full-pallets*
	- *211 167 orders*

 \ge 47 π-hub implanted for road transport, 19 π-hub for multi-modal transport (road and railway)

Numerical study

Input data:

Disruptions profiles by Snyder and Shen (2006):

\triangleright Routing agent:

- ❖ Best path: Dijkstra's Algorithm
- **❖** Two criteria for path optimization
	- Minimization of lead time
	- Minimisation of total distance travelled

Scenarios and main KPIs

For each type of disruptions:

Scenario index: Routing criteria. Disruption strategy. Disruption profile

In total:

8 disruption profiles*2 disruptions protocol*2 optimisation criteria scenarios = 32 scenarios $+3$ (reference without disruptions) = 35 scenarios

Total logistics cost

Disruption: (Fail probability, Repair probability, lost in capacity)

Lost in capacity of PI: $3\%~29\%$ vs Augmentation in cost: $0\%~4\%$ Long rare disruptions: Avoidance Frequent disruptions: Risk-taking

Percentage of increase in Total logistics cost

Average lead time

DISRUPTION: (FAIL PROBABILITY, REPAIR PROBABILITY, LOST IN CAPACITY)

Maximum: 1,83/8h in augmentation in average lead time Avoidance outperforms Risk-taking

Total transport emission:

Disruption: (Fail probability, Repair probability, lost in capacity)

Lost in capacity of PI: 3% - 29% vs Augmentation in emission: 1% - 10% Distance: Risk-taking Time: Risk-taking for frequent disruptions, Avoidance for rare long disruptions Conclusions:

- 1) Doesn't exist one optimal protocol;
- 2) Total logistics cost: maximum 4% vs 29% lost in capacity of PI;
- 3) Lead times: maximum 1,83/8 hours for 29% lost in capacity of PI;
- 4) Emission: maximum 10% for 29% lost in capacity of PI.

Physical Internet is a resilient network to disruptions at hubs.

Conclusions and perspectives

Perspectives:

≻ Categorization of disruptions

 \triangleright Shipper strategies, i.e. inventory management

Thank you for your attention!