

PI-Based Automated Diagnosis: The Blood Supply Chain Perspective

Quentin SCHOEN, Franck FONTANILI, Matthieu LAURAS, Sébastien TRUPTIL and Anne-Ghislaine ANQUETIL

Atlanta, 29/06/2016

Context of the research work

The Blood Supply Chain: Complex?

- High diversity
- Fresh products
- Traceability requirements
- Short lifespan
- High uncertainty

Our research objectives:

This paper:

29/06/2016

- Supporting the blood supply chain re-engineering
- Improving the management of this supply chain

IPIC 2016

The re-engineering approach

How to diagnose the Blood Supply Chain?

For each item:

Added Value Activities? Inventories? Leadtimes? Distance?...

Our Approach: The Process Mining®

Difficulties and risks: Log file

Accuracy, completeness, availability,... of data

29/06/2016

How to get a log file? - Solution 1 = "hand made"

Field observations and "manual" data gathering

Difficulties, risks

- Non-exhaustive
- Misinterpretation
- Inaccurate measurements
- Time spent

7	0			Exama Intal Sorhe	Dep Harry	420				1
						Professionnel	Autonomie	Nb acc.	Type acc.	4
_		Fin	Notes	Activité	Lieu	AA	_		-	+
N.	Début	Jila	M. scul Sodalie-	Enly	Acc	115	/	1	1	12
1	9.2210	9,77.10	cords over	EN	ACC	M	-		-	18
2	9 96 14	99/36	1	Sat	ALC	F15				+
3	4 76 14	9 1754	Cade ven	LAST.	34	M				+
4	9.9616	9.30.00	Vice Blesket	EXCIN	EV	AS				-
6	5.300	9.3150		Sate	ACC		-		-	- 0
7	9 5031	5.33.07	n.lax	Ent	Acc	301				-
8	9.30,0	4		NEPOIS	EV	M				\mathbf{I}
9	1.33.10	9.5515	Couple Source	C015.	84	AS	-		-	4
10	0.3441		n. garah	Sorte	ALC	105				4
11	03119	9.86.40	netore la avo	WERDLE		AS.		1		
12	9 36 74	53135	Caple chown blue		Acc	45				
13	0 50 35	9.33.14		2nd	33	112		111111111		
14	5.33.14	9.68.25		AHZOC	EV	185				
15	3.404	3 30 88	M. Charlesainois	Inst.		7			A CONTRACTOR	
16	9 6.4	1012.12	of question as	Cors	B1	-05				
17	9.48.00	3.54.30	Cagli choser la	Sorlis	NEC	1	The second second			
18	9.47.25	1200.le	Carle change bloom	Consult	33	1			1000000	П
19	25.076	100058	rt class be non	200 HA	EV	AA			100000000000000000000000000000000000000	
20	357.15	556,0	Coople See	Sorte	Acc			-		н
21	9.51.11	31685	nethory per cook	Nethon	34	As				\dashv
22	9.56 AT	3.56.65	MROUN	Inst	04	115		1 11 34 10		-
23	9.16 15	9.19.17	H. asy	DOC 118	184			-		\dashv
24		10.16.29	H. Rock	consult	Bu	М	The same of	-		-
25	10,0000	10.03.08	Corps chenx ble	Sale	Hec	AS		-	-	
26	1000 15	10.08.25	Congle lock+ Dark	Ent	ALL	AA	-	2		
27			Date of the last	NI NAME						
28	10.00.16	10.10,39	n. chave as as:	EXON	EV	1	1 1 1 1 1 1 1 1 1	3 1033	A STATE OF THE PARTY OF THE PAR	200

Next step: Paper to Computer (worksheet file)

How to get a log file? - Solution 2 = "DB made"

Data extracted from IT Systems

How to get a log file? - Solution 3: "PI-container made »

- PI-containers principles to be designed & applied to the Blood Supply Chain
 - Active
 - Standard

T-container

World standard Easy to transport and handle Capable of sustaining tough external conditions Stackable as cargo containers

H-container

World standard Easy to handle Capable of sustaining tough handling conditions Stackable 2,4m minimum

P-container

World standard Easy to insert and extract Capable of protecting the product Stackable 1,2m minimum

From (Montreuil, 2015)

Institut Mines-Télécom

MINES Albi-Carmaux

Our proposal

Coupling Physical Internet & Process Mining to automatically diagnose Supply Chains

- How to design the PI-Containers?
 - For indoor purposes?
 - For outdoor purposes?
 - For mixed purposes?

Indoor Experiment with RTLS (Real Time Location System)

RTLS for Fresh H-Containers

- **Using Active Radio Fequency Tags (UWB)**
- **UWB** signal received by sensors (at least 2)
- Tag position (x,y,z) can be calculated from:
 - Angle Of Arrival (AoA)
 - Time Difference of Arrival (TDoA)

29/06/2016

IPIC 2016

Experiment

29/06/2016

IPIC 2016

Event #	ID#	Activity	Timestamp
1764	209 8	Vehicle departure	26/10/2015 20:33:34

Exploitation

Even Containe t r ID		Activity	Timestamp start	Timestamp end	
8	2004	EmptyContainers_Area.Buffers_Empty_Cont_C GR(1)		26/10/2015 8:12	
31	2004	PickAndPack_Area.Picking(1)	26/10/2015 8:16	26/10/2015 8:48	
49 3007		EmptyContainers_Area.Buffers_Empty_Cont_P FC(1)		26/10/2015 9:09	
62	3007	PickAndPack_Area.Picking(1)	26/10/2015 9:14	26/10/2015 9:20	
191	2004	Ready2Go_CGR_Buffers_CGR(1)	26/10/2015 8:53	26/10/2015 12:06	
214	2004	CGR area in the vehicle (+4°C)	26/10/2015 12:12	26/10/2015 12:21	
231	3007	Ready2Go_PFC.Buffers_PFC(2)	26/10/2015 9:24	26/10/2015 12:36	
244	3007	PFC area in the vehicle (-25°C) 26/		26/10/2015 12:46	
1395 2191		EmptyContainers_Area.Buffers_Empty_Cont_C GR(1)		27/10/2015 15:47	
1413	2191	PickAndPack_Area.Picking(1)	27/10/2015 15:51	27/10/2015 16:39	
1493 1077 8		EmptyContainers_Area.Buffers_Empty_Cont_C PA(1)		27/10/2015 18:16	
1518	1077	PickAndPack_Area.Picking(1)	27/10/2015 18:20	27/10/2015 19:03	
1602 2191		Ready2Go_CGR.Buffers_CGR(3)	27/10/2015 16:43	27/10/2015 19:55	
1625	2191	CGR area in the vehicle (+4°C)	27/10/2015 20:00	27/10/2015 20:12	
1703	1077 Ready2Go_CPA.Buffers_CPA(6)		27/10/2015 19:07	27/10/2015 20:58	
1727	1077	CPA area in the vehicle(+22°C)	27/10/2015 21:04	27/10/2015 21:23	
4278	78 3339 EmptyContainers_Area.Buffers_Empty_Cont FC(1)			30/10/2015 19:45	
4366	3339	PickAndPack_Area.Picking(1)	30/10/2015 19:50	30/10/2015 20:12	
4471	3339	Ready2Go_PFC.Buffers_PFC(6)	30/10/2015 20:17	30/10/2015 21:11	

Obtained Log File

Exploitation

Conclusion and Perspectives

- A starting research work to support the improvement of Supply Chains by coupling Physical Internet and Process Mining
- Many things still have to be done:
 - Design of PI-Containers for Fresh Supply Chains
 - Indoor / outdoor
 - Use the PI-principles to support the management of Fresh Supply Chains in real-time
 - Agility
 - Larger experiments
 - Validation

29/06/2016

matthieu.lauras@mines-albi.fr

IPIC 2016

ÉTABLISSEMENT FRANÇAIS DU SANG

$F^2\pi$: A Physical Internet Architecture for Fresh Food Distribution Networks

Amitangshu Pal and Krishna Kant

Computer and Information Sciences
Temple University

Background

- \triangleright Fresh Food Physical Internet ($F^2\pi$)
 - An extension of Physical Internet (PI)
- ➤ Motivation
 - 40% of fresh food wasted
 - Transportation efficiency ~15% → huge and avoidable carbon footprint
 - Long driving time of truckers → higher turnover rate

Virtualization Layer

Transport/Delivery

Routing & Distribution

Media Switching Layer

Physical Layer

Food Freshness

- Fresh food deteriorate in quality over time
 - Governed by complex biochemical processes that depend on the food type, initial quality, temperature, humidity, vibrations, bacterial level, and bruises during storage/transportation
 - Fruits or vegetables generally follow zero-order degradation or linear decay
 - Meat or fish follow first-order degradation of exponential decay

Transportation Efficiency

- Transportation efficiency already pretty low in logistics, worse with local distribution
 - Small quantities at each location
 - Varying quality and quantity
 - Sharing of space between multiple products with differing perishability is challenging

US Truck Transportation

15-25% OF MILES DRIVEN ARE EMPTY

NON-EMPTY MILES ARE 36% UNDERUTILIZED

Long Driving Time: Higher turnover rate

Social impact

- Long driving time of the truck drivers → long stay away time from home for days and weeks → higher turnover rate → driver shortage
- Truckload industry as a whole replaced the equivalent of 95% of their entire workforce of drivers by the end of 2014
- The truck driver shortage is expected to surge to 239,000 by 2022

Our Approach

Shared architecture

□ The truck vendors carry the packages in between different distribution centers → truck capacity is shared → improves efficiency

Dividing longer trips into smaller hop

□ The long truck journey is divided into smaller trips → reduces the truckers away home time

Integrating the freshness metric in package delivery

- Makes the problem more challenging
- Tradeoff in between fresh delivery and transportation efficiency

F²π: Package Forwarding Strategy

Zone Base Forwarding Strategy

Solution

- Divide the long journey of a truck drivers among multiple drivers
- □ Each truck runs within smaller zones → reduces truckers away home time
- □ Truck load-unload packages of multiple DCs in his journey → improves the transportation efficiency
- Inter-domain and intra-domain forwarding strategies

Intra-domain Forwarding Strategy

- Factor1: Given the orders what is the best truck routing to maximize the overall transportation efficiency
 - Function: Total amount delivered per unit time.
 - Can be run periodically to decide schedules dynamically

$$\begin{array}{ll} \text{Maximize} & \frac{\sum_{i} \sum_{j} \sum_{t} \sum_{\ell} d_{ij}^{t\ell}}{\sum_{i} \sum_{j} \sum_{\ell} x_{ij}^{\ell}.T_{ij}} & \text{Efficiency factor} \end{array}$$

- Factor2: Maximize the overall delivery quality
 - Function: Delivery quality*total amount delivered

Maximize
$$\sum_{j} \sum_{t} \sum_{\ell} \sum_{i} \left(\mathbb{Q}_{ij}^{t} - k^{t} B_{j}^{\ell} \right) d_{ji}^{t\ell}$$
 Quality factor

 $d_{ij}^{\ell\ell} \triangleq \text{Amount of type } t \text{ unloaded at } DC_i \text{ from } DC_j \text{ at the } \ell\text{-th transit-segment}$ $B_j^{\ell} \triangleq \text{Time when the truck delivers at } DC_j \text{ in the } \ell\text{-th transit-segment}$

$$T_{ij} \triangleq \text{Time of travel from } \mathbf{DP_i} \text{ to } \mathbf{DP_j}$$

Intra-domain Forwarding Strategy

- Constraint 1: The delivery quality is above certain threshold
- Constraint 2: Truck needs to return to its starting point within its maximum limit

Local and Long-distance logistics

- These DCs can be π -transit, π -switch, π -bridge, π -gateway, π -hub \rightarrow depending on their role in the distribution logistics
- Integration if local and longdistance logistics
 - Local distribution → small trucks or trailers
 - Long-distance distribution
 → large trucks (18 wheelers)

Performance Evaluation

Effect of smaller hops

- A truck carries broccolis with Vitamin C content of 99.9 mg/100 g initially
- □ Two types of environments → chilled environment (2°C), warmer environment (20°C)
- At 2° C, k = 0.0408 mg/100 g in an hour, at 20° C, k = 0.1375 mg/100 g in an hour
- A truck needs to deliver packages to a DC that requires 48 hours of driving time ->
 driver drives 12 hours continuously, takes rest for 12 hours

By introducing 8 hops → trip time/driver is reduced by ~93%, freshness improves by ~5%

Intra-domain forwarding

- Two types of vegetables: raspberries and broccolis
 - At 2⁰ C → deterioration rates of 0.0229 mg/100 g and 0.0408 mg/100 g per hour respectively
 - Initial Vitamin C content is assumed to be 27 and 99.9 mg/100 g
- Truck capacity limit of 100 packages
- \Box T_{min} is assumed to be 6 units

Order matrix

	A	В	C	D	E
A	-	X	X	X	X
В	-	-	X	-	-
C	X	-	-	-	X
D	X	-	-	-	X
E	X	-	X	X	-

Time matrix (Hours)

	A	В	C	D	E
A	-	2	3	3	3
В	2	-	2	3	3
C	3	2	-	1	1.5
D	3	3	1	-	1
E	3	3	1.5	1	-

Intra-domain forwarding

- Two types of vegetables: raspberries and broccolis
 - At 2⁰ C → deterioration rates of 0.0229 mg/100 g and 0.0408 mg/100 g per hour respectively
 - Initial Vitamin C content is assumed to be 27 and 99.9 mg/100 g
- Truck capacity limit of 100 packages
- \Box T_{min} is assumed to be 6 units

Improving efficiency results in reduced delivery quality and vice versa

Conclusions

- □ We explore $F^2\pi$ architecture
 - with the notion of collaborative truck scheduling and space sharing
 - Reduce trucker's away home time, improve the transportation efficiency and maintain fresh delivery of packages especially important for perishable food packages
- Key findings of the proposed architecture
 - Improves drivers away home time by ~93%
 - Improves delivery quality by ~5% by dividing the long driving distance into smaller hops
 - Tradeoff between transportation efficiency and freshness
- The mechanism can complement current Physical Internet initiatives with a vision of worker-friendly and cooperative fresh food logistics and transportation

Economy

THANK YOU

QUESTIONS???

Long Driving Time: Higher turnover rate

Social impact

- Long driving time of the truck drivers → long stay away time from home for days and weeks → higher turnover rate → driver shortage
- Truckload industry as a whole replaced the equivalent of 95% of their entire workforce of drivers by the end of 2014
- The truck driver shortage is expected to surge to 239,000 by 2022

What's your view on the driver shortage?

*http://www.overdriveonline.com/driver-shortage-readers-weigh-in/

Product Mixing

First case:

- Broccoli's gets more priority because of less spoilage

Second case:

- Raspberries gets more priority -> packages close to spoilage are transported first

